Thermodynamic limit of the Six - Vertex Model with Domain Wall Boundary Conditions
نویسنده
چکیده
We address the question of the dependence of the bulk free energy on boundary conditions for the six vertex model. Here we compare the bulk free energy for periodic and domain wall boundary conditions. Using a determinant representation for the partition function with domain wall boundary conditions, we derive Toda differential equations and solve them asymptotically in order to extract the bulk free energy. We find that it is different and bears no simple relation with the free energy for periodic boundary conditions. The six vertex model with domain wall boundary conditions is closely related to algebraic combinatorics (alternating sign matrices). This implies new results for the weighted counting for large size alternating sign matrices. Finally we comment on the interpretation of our results, in particular in connection with domino tilings (dimers on a square lattice).
منابع مشابه
Six - Vertex Model with Domain Wall Boundary Conditions and One - Matrix Model
The partition function of the six-vertex model on a square lattice with domain wall boundary conditions (DWBC) is rewritten as a hermitean one-matrix model or a discretized version of it (similar to sums over Young diagrams), depending on the phase. The expression is exact for finite lattice size, which is equal to the size of the corresponding matrix. In the thermodynamic limit, the matrix int...
متن کاملSix-vertex model with domain wall boundary conditions and one-matrix model
The partition function of the six-vertex model on a square lattice with domain wall boundary conditions (DWBC) is rewritten as a Hermitian one-matrix model or a discretized version of it (similar to sums over Young diagrams), depending on the phase. The expression is exact for finite lattice size, which is equal to the size of the corresponding matrix. In the thermodynamic limit, the matrix int...
متن کاملDomino tilings and the six-vertex model at its free fermion point
At the free-fermion point, the six-vertex model with domain wall boundary conditions (DWBC) can be related to the Aztec diamond, a domino tiling problem. We study the mapping on the level of complete statistics for general domains and boundary conditions. This is obtained by associating to both models a set of non-intersecting lines in the Lindström-Gessel-Viennot (LGV) scheme. One of the conse...
متن کاملFunctional relations for the six vertex model with domain wall boundary conditions
In this work we demonstrate that the Yang-Baxter algebra can also be employed in order to derive a functional relation for the partition function of the six vertex model with domain wall boundary conditions. The homogeneous limit is studied for small lattices and the properties determining the partition function are also discussed. PACS numbers: 05.50+q, 02.30.IK
متن کاملNumerical study of the 6-vertex model with domain wall boundary conditions
A Markov process is constructed to numerically study the phase separation in the 6-vertex model with domain wall boundary conditions. It is a random walk on the graph where vertices are states and edges are elementary moves. It converges to the Gibbs measure of the 6-vertex model. Our results show clearly that a droplet of c vertices is created when Boltzamnn weights are in the antisegnetoelect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000